大数据如何获得?如何统计分析?(mongodb怎么应对高并发)

大数据如何获得?如何统计分析?

“大数据的运用,汽车私人定制服务已经不远。”

这里仅从笔者比较熟悉的汽车行业举一个例子,分享一下车联网大数据在汽车产业运用的一个例子,抛砖引玉。

专注于为中小企业提供网站设计制作、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业青岛免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

2017年我国汽车保有量已经达到2.05亿辆,而且预计在未来的销量还会增加,到2020年达到3000万辆。

汽车的最终目的是为人们提供移动出行的解决方案,对于未来汽车的发展趋势,业界基本上有一个共识,未来的汽车会朝着“电动化,网联化,智能化,共享化”四个方向发展。

基于汽车网联化的发展,形成了以用户为中心的生态链,如下图:

围绕在车主周围,有不同层级的参与者。传统的主机厂,汽车制造商,硬件供应商,4S店,只是其中很一小部分。还有各种服务商,提供商,开发商,保险公司,传媒,甚至教育机构,也扮演着重要的角色。

车联网能够将这些参与者全部连接起来,靠什么?

汽车产业数据,驾驶行为数据,汽车感知数据,外部环境数据,还有最重要的人的社会数据,都储存在“庞大的汽车保有量”这个数据库中。

从数据源角度,可以将大数据统计工具分两类:有数据源和无数据源。

解释:依靠海量网络数据为数据源,整理呈现分析最终展现出来给你看的统计工具。

此类工具包括:

百度指数:以百度海量网民行为数据为基础的数据分享平台:

5118:可掌控一些大网站运营所需的关键数据(如今日头条)

阿里指数:电商必备的行业价格、供应、采购趋势分析工具

其他还包括微信指数/搜狗指数/360指数/微指数……


大数据的数据来源主要有三个渠道,分别是物联网系统、传统信息处理系统以及互联网应用(Web和App),所以要想获得大数据就要从这三个渠道来获取。

物联网系统产生的数据占据着大数据中的重要比例,物联网产生的数据多以非结构化数据为主,包括视频、音频、传感数据等等。物联网的应用领域众多,比如工业物联网、农业物联网、车联网、智慧城市等都会产生大量的数据,通常情况下这些数据的采集都是有严格要求的,是不能开放给个人的。如果个人要想获得这部分数据,一个比较可行的方案是跟数据采集者进行合作,比如做数据分析等业务。

传统信息系统涵盖的领域非常广泛,有政务系统、企业ERP、教育信息系统、医疗信息系统等等,传统信息系统涵盖的数据多以结构化数据为主,而且往往有较高的精确度和关联关系,这部分数据的价值密度也是相对比较高的。

但是传统信息系统涵盖的数据往往涉及到个人隐私、商业机密等内容,所以这部分内容通常是受到严密保护的。随着大数据技术的发展,业界对于政务系统的数据开放的呼声越来越高,经过脱敏的数据往往并不会对个人隐私构成侵犯,所以未来某些政务系统的大数据会陆续开放出来。

互联网应用也是产生大数据的重要基础之一,包括各种Web应用以及大量的App产品,这部分数据多以半结构化为主,数据内容也存在真假难辨的情况,但是由于这部分数据的价值密度相对还是比较高的,所以现在不少互联网公司就是基于这些数据对用户进行“画像”,从而进行多维度的分类。

至于大数据分析工具,推荐2个给你。

1、FineReport

FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,它“专业、简捷、灵活”的特点和无码理念,仅需简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。

来看看它做的dashboard吧:

主要讨论大数据的分析

从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?

1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2. 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据究竟是什么?大数据有哪些技术呢?

我有幸做了有五六七八年的大数据吧,谈谈自己的看法。简单来说,就是现在各个APP,网站产生的数据越来越多,越来越大,传统的数据库比如MySQL Oracle之类的,已经处理不过来了。所以就产生了大数据相关的技术来处理这些庞大的数据。

第一,首先要把这些大数据都可靠的存储起来,经过多年的发展,hdfs已经成了一个数据存储的标准。

第二,既然有了这么多的数据,我们可以开始基于这些数据做计算了,于是从最早的MapReduce到后来的hive,spark,都是做批处理的。

第三, 由于像hive这些基于MapReduce的引擎处理速度过慢,于是有了基于内存的olap查询引擎,比如impala,presto。

第四,由于批处理一般都是天级别或者小时级别的,为了更快的处理数据,于是有了spark streaming或者flink这样的流处理引擎。

第五,由于没有一个软件能覆盖住所有场景。所以针对不同的领域,有了一些特有的软件,来解决特定场景下的问题,比如基于时间序列的聚合分析查询数据库,inflexdb opentsdb等。采用预聚合数据以提高查询的druid或者kylin等,

第六,还有其他用于数据削峰和消费订阅的消息队列,比如kafka和其他各种mq

第七,还有一些其他的组件,比如用于资源管理的yarn,协调一致性的zookeeper等。

第八,由于hdfs 处理小文件问题不太好,还有为了解决大数据update和insert等问题,引入了数据湖的概念,比如hudi,iceberg等等。

第九,业务方面,我们基于大数据做一些计算,给公司的运营提供数据支撑。做一些推荐,给用户做个性化推荐。机器学习,报警监控等等。

大数据技术可以定义为一种软件应用程序,旨在分析,处理和提取来自极其复杂的大型数据信息,而传统数据处理软件则无法处理。

我们需要大数据处理技术来分析大量实时数据,并提出预测和方案以减少未来的风险。

在类别中的大数据技术分为两大类型:

1.运营大数据技术

2.分析大数据技术


首先,运营大数据与我们生成的常规日常数据有关。这可能是在线交易,社交媒体或特定 组织的数据等。

运营大数据技术的一些示例如下:

·网上订票,其中包括您的火车票,飞机票,电影票等。

·在线购物是您的淘宝,京东交易等等。

·来自社交媒体网站(如微信,QQ等)的数据。

·任何跨国公司的员工详细信息。

到此,以上就是小编对于mongodb 高并发的问题就介绍到这了,希望这2点解答对大家有用。

本文名称:大数据如何获得?如何统计分析?(mongodb怎么应对高并发)
当前链接:http://www.mswzjz.com/qtweb/news26/176776.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联