详解Flink的窗口操作

我们经常需要在一个时间窗口维度上对数据进行聚合,窗口是流处理应用中经常需要解决的问题。Flink的窗口算子为我们提供了方便易用的API,我们可以将数据流切分成一个个窗口,对窗口内的数据进行处理,下面为大家详细讲解一下Flink的窗口操作。

资源ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18980820575(备注:SSL证书合作)期待与您的合作!

一、窗口(window)的类型

对于窗口的操作主要分为两种,分别对于Keyedstream和Datastream。他们的主要区别也仅仅在于建立窗口的时候一个为.window(…),一个为.windowAll(…)。对于Keyedstream的窗口来说,他可以使得多任务并行计算,每一个logical key stream将会被独立的进行处理。

stream
      .keyBy(...)               "assigner"
     [.trigger(...)]            "trigger" (else default trigger)
     [.evictor(...)]            "evictor" (else no evictor)
     [.allowedLateness(...)]    "lateness" (else zero)
     [.sideOutputLateData(...)] "output tag" (else no side output for late data)
      .reduce/aggregate/fold/apply()      "function"
     [.getSideOutput(...)]      "output tag"

按照窗口的Assigner来分,窗口可以分为

Tumbling window, sliding window,session window,global window,custom window

每种窗口又可分别基于processing time和event time,这样的话,窗口的类型严格来说就有很多。

还有一种window叫做count window,依据元素到达的数量进行分配,之后也会提到。

窗口的生命周期开始在第一个属于这个窗口的元素到达的时候,结束于第一个不属于这个窗口的元素到达的时候。

二、窗口的操作

2.1 Tumbling window

固定相同间隔分配窗口,每个窗口之间没有重叠看图一眼明白。

下面的例子定义了每隔3毫秒一个窗口的流:

WindowedStream
  
    Rates = rates    .keyBy(MovieRate::getUserId)    .window(TumblingEventTimeWindows.of(Time.milliseconds(3))); 
  

2.2 Sliding Windows

跟上面一样,固定相同间隔分配窗口,只不过每个窗口之间有重叠。窗口重叠的部分如果比窗口小,窗口将会有多个重叠,即一个元素可能被分配到多个窗口里去。

下面的例子给出窗口大小为10毫秒,重叠为5毫秒的流:

WindowedStream
  
    Rates = rates                .keyBy(MovieRate::getUserId)                .window(SlidingEventTimeWindows.of(Time.milliseconds(10), Time.milliseconds(5))); 
  

2.3 Session window

这种窗口主要是根据活动的事件进行窗口化,他们通常不重叠,也没有一个固定的开始和结束时间。一个session window关闭通常是由于一段时间没有收到元素。在这种用户交互事件流中,我们首先想到的是将事件聚合到会话窗口中(一段用户持续活跃的周期),由非活跃的间隙分隔开。

// 静态间隔时间
WindowedStream
  
    Rates = rates                .keyBy(MovieRate::getUserId)                .window(EventTimeSessionWindows.withGap(Time.milliseconds(10))); // 动态时间 WindowedStream
   
     Rates = rates                .keyBy(MovieRate::getUserId)                .window(EventTimeSessionWindows.withDynamicGap(())); 
   
  

2.4 Global window

将所有相同keyed的元素分配到一个窗口里。好吧,就这样:

WindowedStream
  
    Rates = rates    .keyBy(MovieRate::getUserId)    .window(GlobalWindows.create()); 
  

三、窗口函数

窗口函数就是这四个:ReduceFunction,AggregateFunction,FoldFunction,ProcessWindowFunction。前两个执行得更有效,因为Flink可以增量地聚合每个到达窗口的元素。

Flink必须在调用函数之前在内部缓冲窗口中的所有元素,所以使用ProcessWindowFunction进行操作效率不高。不过ProcessWindowFunction可以跟其他的窗口函数结合使用,其他函数接受增量信息,ProcessWindowFunction接受窗口的元数据。

举一个AggregateFunction的例子吧,下面代码为MovieRate按user分组,且分配5毫秒的Tumbling窗口,返回每个user在窗口内评分的所有分数的平均值。

DataStream
  
   > Rates = rates                .keyBy(MovieRate::getUserId)                .window(TumblingEventTimeWindows.of(Time.milliseconds(5)))                .aggregate(new AggregateFunction
   
    >() {                    @Override                    public AverageAccumulator 
    createAccumulator() {                        
    return new AverageAccumulator();                    }                    @Override                    public AverageAccumulator add(MovieRate movieRate, AverageAccumulator acc) {                        acc.userId = movieRate.userId;                        acc.sum += movieRate.rate;                        acc.count++;                        
    return acc;                    }                    @Override                    public Tuple2
    
      getResult(AverageAccumulator acc) {                        
     return  Tuple2.of(acc.userId, acc.sum/(double)acc.count);                    }                    @Override                    public AverageAccumulator merge(AverageAccumulator acc0, AverageAccumulator acc1) {                        acc0.count += acc1.count;                        acc0.sum += acc1.sum;                        
     return acc0;                    }                }); public static class AverageAccumulator{        int userId;        int count;        double sum;    } 
    
   
  

以下是部分输出:

...
1> (44,3.0)
4> (96,0.5)
2> (51,0.5)
3> (90,2.75)
...

看上面的代码,会发现add()函数特别生硬,因为我们想返回Tuple2 类型,即Integer为key,但AggregateFunction似乎没有提供这个机制可以让AverageAccumulator的构造函数提供参数。所以,这里引入ProcessWindowFunction与AggregateFunction的结合版,AggregateFunction进行增量叠加,当窗口关闭时,ProcessWindowFunction将会被提供AggregateFunction返回的结果,进行Tuple封装:

DataStream
  
   > Rates = rates    .keyBy(MovieRate::getUserId)    .window(TumblingEventTimeWindows.of(Time.milliseconds(5)))    .aggregate(new MyAggregateFunction(), new MyProcessWindowFunction()); public static class MyAggregateFunction implements AggregateFunction
   
     {    @Override    public AverageAccumulator 
    createAccumulator() {        
    return new AverageAccumulator();    }    @Override    public AverageAccumulator add(MovieRate movieRate, AverageAccumulator acc) {        acc.sum += movieRate.rate;        acc.count++;        
    return acc;    }    @Override    public Double getResult(AverageAccumulator acc) {        
    return  acc.sum/(double)acc.count;    }    @Override    public AverageAccumulator merge(AverageAccumulator acc0, AverageAccumulator acc1) {        acc0.count += acc1.count;        acc0.sum += acc1.sum;        
    return acc0;    } } public static class MyProcessWindowFunction extends    ProcessWindowFunction
    
     , Integer, TimeWindow> {    @Override    public void process(Integer key,                        Context context,                        Iterable
     
       results,                        Collector
      
       > out) throws Exception {        Double result = results.iterator().next();        out.collect(new Tuple2(key, result));    } } public static class AverageAccumulator{    int count;    double sum; } 
      
     
    
   
  

可以得到,结果与上面一样,但代码好看了很多。

四、其他操作

4.1 Triggers(触发器)

触发器定义了窗口何时准备好被窗口处理。每个窗口分配器默认都有一个触发器,如果默认的触发器不符合你的要求,就可以使用trigger(…)自定义触发器。

通常来说,默认的触发器适用于多种场景。例如,多有的event-time窗口分配器都有一个EventTimeTrigger作为默认触发器。该触发器在watermark通过窗口末尾时出发。

PS:GlobalWindow默认的触发器时NeverTrigger,该触发器从不出发,所以在使用GlobalWindow时必须自定义触发器。

4.2 Evictors(驱逐器)

Evictors可以在触发器触发之后以及窗口函数被应用之前和/或之后可选择的移除元素。使用Evictor可以防止预聚合,因为窗口的所有元素都必须在应用计算逻辑之前先传给Evictor进行处理

4.3 Allowed Lateness

当使用event-time窗口时,元素可能会晚到,例如Flink用于跟踪event-time进度的watermark已经超过了窗口的结束时间戳。

默认来说,当watermark超过窗口的末尾时,晚到的元素会被丢弃。但是flink也允许为窗口operator指定最大的allowed lateness,以至于可以容忍在彻底删除元素之前依然接收晚到的元素,其默认值是0。

为了支持该功能,Flink会保持窗口的状态,知道allowed lateness到期。一旦到期,flink会删除窗口并删除其状态。

把晚到的元素当作side output。

SingleOutputStreamOperator
  
    result = input    .keyBy(
   
    )    .window(
    
     )    .allowedLateness(
     )    .sideOutputLateData(lateOutputTag)    .
      
       (
       
        function>); 
       
      
    
   
  

分享题目:详解Flink的窗口操作
链接分享:http://www.gawzjz.com/qtweb/news39/199989.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联