为了试验一下多核CPU上排序算法的效率,得比较单任务情况下和多任务并行排序算法的差距,因此选用快速排序算法来进行比较。
10年积累的成都网站设计、做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站制作后付款的网站建设流程,更有云南免费网站建设让你可以放心的选择与我们合作。
测试环境:双核CPU 2.66GHZ
单核CPU 2.4GHZ
以下是一个快速排序算法的源代码:
- UINTSplit(void **ppData, UINTuStart, UINTuEnd,
- COMPAREFUNCCompareFunc)
- {
- void *pSelData;
- UINTuLow;
- UINTuHigh;
- uLow = uStart;
- uHigh = uEnd;
- pSelData = ppData[uLow];
- while ( uLow < uHigh )
- {
- while ( (*CompareFunc)(ppData[uHigh], pSelData) > 0
- && uLow != uHigh )
- {
- --uHigh;
- }
- if ( uHigh != uLow )
- {
- ppData[uLow] = ppData[uHigh];
- ++uLow;
- }
- while ( (*CompareFunc)( ppData[uLow], pSelData ) < 0
- && uLow != uHigh )
- {
- ++uLow;
- }
- if ( uLow != uHigh )
- {
- ppData[uHigh] = ppData[uLow];
- --uHigh;
- }
- }
- ppData[uLow] = pSelData;
- returnuLow;
- }
- voidQuickSort(void **ppData, UINTuStart, UINTuEnd,
- COMPAREFUNCCompareFunc)
- {
- UINTuMid = Split(ppData, uStart, uEnd, CompareFunc );
- if ( uMid > uStart )
- {
- QuickSort(ppData, uStart, uMid - 1, CompareFunc);
- }
- if ( uEnd > uMid )
- {
- QuickSort(ppData, uMid + 1, uEnd, CompareFunc);
- }
- }
先测试一下这个快速排序算法排一百万个随机整数所花的时间:
- voidTest_QuickSort(void)
- {
- UINTi;
- UINTuCount = 1000000; //1000000个
- srand(time(NULL));
- void **pp = (void **)malloc(uCount * sizeof(void *));
- for ( i = 0; i < uCount; i++ )
- {
- pp[i] = (void *)(rand() % uCount);
- }
- clockclock_tt1 = clock();
- QuickSort(pp, 0, uCount-1, UIntCompare);
- clockclock_tt2 = clock();
- printf("QuickSort 1000000 Time %ld/n", t2-t1);
- free(pp);
- }
在双核CPU2.66GHZ机器上运行测试程序,打印出花费的时间约为406 ms
在单核CPU2.4GHZ机器上运行测试程序,打印出花费时间约为484ms
可见在双核CPU上运行单任务程序和单核CPU基本是一样的,效率没有任何提高。
下面再来把上面的快速排序程序变成并行的,一个简单的方法就是将要排序的区间分成相同的几个段,然后对每个段进行快速排序,排序完后再使用归并算法将排好的几个区间归并成一个排好序的表,我们先四个线程来进行排序,代码如下:
- void ** Merge(void **ppData, UINTuStart, UINTuEnd,
- void **ppData2, UINTuStart2, UINTuEnd2, COMPAREFUNCcfunc)
- {
- UINTi, j, k;
- UINTu1, u2, v1,v2;
- void **pp1;
- void **pp2;
- void **pp = (void **)malloc( (uEnd-uStart+1+uEnd2-uStart2+1) * sizeof(void *));
- if ( pp == NULL )
- {
- returnNULL;
- }
- if ( (*cfunc)(ppData2[uStart2], ppData[uStart]) > 0 )
- {
- u1 = uStart;
- u2 = uEnd;
- v1 = uStart2;
- v2 = uEnd2;
- pp1 = ppData;
- pp2 = ppData2;
- }
- else
- {
- u1 = uStart2;
- u2 = uEnd2;
- v1 = uStart;
- v2 = uEnd;
- pp1 = ppData2;
- pp2 = ppData;
- }
- k = 0;
- pp[k] = pp1[u1];
- j = v1;
- for (i = u1+1; i <= u2; i++ )
- {
- while ( j <= v2 )
- {
- if ( (*cfunc)(pp2[j], pp1[i]) < 0 )
- {
- ++k;
- pp[k] = pp2[j];
- j++;
- }
- else
- {
- break;
- }
- }
- ++k;
- pp[k] = pp1[i];
- }
- if ( j < v2 )
- {
- for ( i = j; i <= v2; i++)
- {
- ++k;
- pp[k] = pp2[i];
- }
- }
- returnpp;
- }
- typedefstructSORTNODE_st {
- void ** ppData;
- UINT uStart;
- UINT uEnd;
- COMPAREFUNCfunc;
- } SORTNODE;
- DWORDWINAPIQuickSort_Thread(void *arg)
- {
- SORTNODE *pNode = (SORTNODE *)arg;
- QuickSort(pNode->ppData, pNode->uStart, pNode->uEnd, pNode->func);
- return 1;
- }
- #define THREAD_COUNT 4
- INTMQuickSort(void **ppData, UINTuStart, UINTuEnd,
- COMPAREFUNCCompareFunc)
- {
- void **pp1;
- void **pp2;
- void **pp3;
- INT i;
- SORTNODE Node[THREAD_COUNT];
- HANDLE hThread[THREAD_COUNT];
- INT nRet = CAPI_FAILED;
- for ( i = 0; i < THREAD_COUNT; i++)
- {
- Node[i].ppData = ppData;
- if ( i == 0 )
- {
- Node[i].uStart = uStart;
- }
- else
- {
- Node[i].uStart = uEnd * i /THREAD_COUNT + 1;
- }
- Node[i].uEnd = uEnd *(i+1) / THREAD_COUNT;
- Node[i].func = CompareFunc;
- hThread[i] = CreateThread(NULL, 0, QuickSort_Thread, &(Node[i]), 0, NULL);
- }
- for ( i = 0; i < THREAD_COUNT; i++ )
- {
- WaitForSingleObject(hThread[i], INFINITE);
- }
- pp1 = Merge(ppData, uStart, uEnd/4, ppData, uEnd/4+1, uEnd/2, CompareFunc);
- pp2 = Merge(ppData, uEnd/2+1, uEnd*3/4, ppData, uEnd*3/4+1, uEnd, CompareFunc);
- if ( pp1 != NULL && pp2 != NULL )
- {
- pp3 = Merge(pp1, 0, uEnd/2-uStart, pp2, 0, uEnd - uEnd/2 - 1, CompareFunc);
- if ( pp3 != NULL )
- {
- UINTi;
- for ( i = uStart; i <= uEnd; i++)
- {
- ppData[i] = pp3[i-uStart];
- }
- free(pp3);
- nRet = CAPI_SUCCESS;
- }
- }
- if( pp1 != NULL)
- {
- free( pp1 );
- }
- if ( pp2 != NULL )
- {
- free( pp2 );
- }
- returnnRet;
- }
#p#
用下面程序来测试一下排1百万个随机整数的花费时间:
- voidTest_MQuickSort (void)
- {
- UINTi;
- UINTuCount = 1000000; //1000个
- srand(time(NULL));
- void **pp = (void **)malloc(uCount * sizeof(void *));
- for ( i = 0; i < uCount; i++ )
- {
- pp[i] = (void *)(rand() % uCount);
- }
- clockclock_tt1 = clock();
- INTnRet = MQuickSort(pp, 0, uCount-1, UIntCompare);
- clockclock_tt2 = clock();
- printf("MQuickSort 1000000 Time %ld/n", t2-t1);
- free(pp);
- }
在双核CPU上运行后,打印出花费的时间为 234 ms , 单任务版的快速排序函数约需406ms左右,并行运行效率为:406/(2×234) = 86.7% 左右。运行速度快了172ms。
可见双核CPU中,多任务程序速度还是有很大提高的。
当然上面的多任务版的快速排序程序还有很大的改进余地,当对4个区间排好序后,后面的归并操作都是在一个任务里运行的,对整体效率会产生影响。估计将程序继续优化后,速度还能再快一些。
原文链接:http://blog.csdn.net/drzhouweiming/article/details/1109499
本文标题:双核CPU上的快速排序效率
本文来源:http://www.gawzjz.com/qtweb2/news20/14570.html
网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联