创新互联Python教程:python中计算矩阵特征向量的方法

python作为编程中较为简单的编程方法,是可以实现线性计算的,numpy库提供了矩阵运算,可以实现求取矩阵特征向量,scipy也可以实现numpy库提供的矩阵运算功能,是对numpy库提供矩阵运算的扩展,本文介绍python中计算矩阵特征向量的两种方法:1、使用numpy.linalg.eig(a)函数;2、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展)。

10年积累的成都做网站、网站制作经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有淮北免费网站建设让你可以放心的选择与我们合作。

一、使用numpy.linalg.eig(a)函数

参数:

a:想要计算奇异值和右奇异值的方阵。

返回值:

w:特征值。每个特征值根据它的多重性重复。这个数组将是复杂类型,除非虚数部分为0。当传进的参数a是实数时,得到的特征值是实数。

v:特征向量。

使用实例

>>> from numpy import linalg as LA
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([  2.00000000e+00+0.j,   5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j,  0.70710678+0.j        ],
       [ 0.70710678+0.j        ,  0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1.,  1.])
array([[ 1.,  0.],
       [ 0.,  1.]])

二、使用scipy.linalg.eig()计算方阵的特征向量(numpy方法的拓展)

1、语法格式

print('Eig:',lg.eig(arr)) #求矩阵arr的特征向量

2、使用实例

#coding:utf-8
 
from __future__ import division
from scipy import linalg as la
from scipy import optimize
import sympy
import numpy as np
sympy.init_printing()
import matplotlib.pyplot as plt

# 使用scipy求解矩阵特征值
A = np.array([[1, 3, 5], [3, 5, 3], [5, 3, 9]])
evals, evecs = la.eig(A)
eigvalues = la.eigvalsh(A)

以上就是python中计算矩阵特征向量的两种方法,希望能对你有所帮助哟~

当前文章:创新互联Python教程:python中计算矩阵特征向量的方法
浏览路径:http://www.gawzjz.com/qtweb2/news24/18374.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联