Redis低耗能绿色运行体验(redis绿色运行版本)

Redis: 低耗能绿色运行体验

成都创新互联公司是一家集网站建设,金城江企业网站建设,金城江品牌网站建设,网站定制,金城江网站建设报价,网络营销,网络优化,金城江网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

Redis是一个高性能的开源Key-Value存储系统,常用于缓存、消息队列、计数器等场景,并且在互联网行业中广泛应用。它运行稳定、安全可靠、可水平扩展等优点受到了开发者和运维人员的青睐。

但是,在建立大型Redis集群时,我们经常会遇到如下瓶颈:

1. 对内存的需求很高

2. CPU使用率过高

3. 高IO处理开销(特别是在持久化时)

4. 网络带宽限制

这些问题很大程度上增加了运维成本,同时对服务器的资源也造成了很大的消耗。那么,怎么才能避免这些问题呢?

Redis Greenlet模型是解决这些问题的方案之一。Greenlet模型是在Python中实现的,它可以实现在单个线程上实现协作调度的并发模型。我们可以使用Greenlet来管理Redis客户端连接,从而达到了以下目的:

1. 最小化内存使用

2. 大大降低CPU使用率

3. 减少IO操作的开销

4. 最大化网络带宽的使用

为了更好地说明Redis Greenlet模型的原理和用法,我们以下面一段代码作为例子,我们在代码中构造了一个简单的订阅和发布功能:

import redis
from gevent import Greenlet
from gevent import monkey
from gevent.pool import Pool

monkey.patch_all()

class RedisClient(object):
def __init__(SELF):
self._pool = redis.ConnectionPool(
host="localhost",
port=6379,
decode_responses=True
)
self._sub = None
self._pub = None

def subscribe(self, CHANNEL):
if not self._sub:
self._sub = redis.StrictRedis(connection_pool=self._pool)
if isinstance(channel, bytes):
channel = channel.decode("utf-8")
return self._sub.subscribe(channel)
def publish(self, channel, message):
if not self._pub:
self._pub = redis.StrictRedis(connection_pool=self._pool)
if isinstance(message, bytes):
message = message.decode("utf-8")
return self._pub.publish(channel, message)
def subscribe_cb(message):
print(message['data'])
def subscribe_task(queue):
data = queue.get()
channel = data[0]
conn = RedisClient()
p = conn.subscribe(channel)
while True:
for item in p.listen():
if item['type'] == 'message':
message = {
'data': item['data'],
'channel': item['channel'].decode('utf-8')
}
subscribe_cb(message)

def mn():
NUM_WORKERS = 4
pool = Pool(NUM_WORKERS)
queue = gevent.queue.Queue()
for i in range(NUM_WORKERS):
g = Greenlet(subscribe_task, queue)
g.start()

retries = 3
while retries > 0:
try:
queue.put(('test',))
queue.put(('test2',))
queue.put(('test3',))
break
except redis.exceptions.TimeoutError:
retries -= 1
continue
if retries == 0:
rse Exception("Connecting to Redis fled after 3 tries")
if __name__ == "__mn__":
mn()

在这个代码中,我们使用了Python Gevent库实现了协程,这样就可以在协程上实现异步IO,来减小CPU的使用,并且可以充分利用网络带宽。同时我们也使用了Redis连接池来来避免了频繁的连接开销。这样,在高并发和大数据量情况下,Redis的性能得到了进一步的提高。

Redis Greenlet模型可以帮助我们降低资源的消耗,同时提高系统的性能表现,给用户带来更好的使用体验。如果您正在构建一个大型Redis集群,不妨考虑一下采用这种方案来优化您的系统。

香港服务器选创新互联,2H2G首月10元开通。
创新互联(www.cdcxhl.com)互联网服务提供商,拥有超过10年的服务器租用、服务器托管、云服务器、虚拟主机、网站系统开发经验。专业提供云主机、虚拟主机、域名注册、VPS主机、云服务器、香港云服务器、免备案服务器等。

网站栏目:Redis低耗能绿色运行体验(redis绿色运行版本)
当前地址:http://www.mswzjz.com/qtweb/news44/171694.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联