如何用ml5.js和HTML创建一款图像分类工具

译者 | 布加迪

成都创新互联是一家专注网站建设、网络营销策划、微信小程序定制开发、电子商务建设、网络推广、移动互联开发、研究、服务为一体的技术型公司。公司成立十载以来,已经为成百上千家隧道混凝土搅拌车各业的企业公司提供互联网服务。现在,服务的成百上千家客户与我们一路同行,见证我们的成长;未来,我们一起分享成功的喜悦。

审校 | 孙淑娟

机器学习是现代世界的一项基础技术。计算机可以学习识别图像、创作艺术品,甚至自行编写代码,所有这些基本上不需要人的干预。

但机器学习是如何工作的?你自己又如何使用它呢?

一、机器学习简介

机器学习是相对简单的概念。计算机系统可以通过分析信息池中的现有数据模式来学习和适应。这通常在没有人类明确指示的情况下完成。

虚拟助手工具就是一个典例。Siri、Cortana和谷歌Assistant都广泛使用机器学习来理解人类语言。这始于现有的音频录音库,但这些工具也可以从它们与用户的交互中学习。这使它们能够自行改进。

二、ml5.js简介

大多数机器学习算法和工具使用R或Python编写代码,但ml5.js不一样。作为谷歌的Tensorflow.js库的接口,ml5.js是一个开源项目,将机器学习交到JavaScript开发人员的手中。

只需在HTML中包含单单一段外部脚本,你就可以开始将ml5.js用于自己的Web应用程序。

三、机器学习入门:学习过程

训练机器学习算法需要时间。计算机的学习速度比人类快得多,但其学习方式也与人类不一样。不过幸好,ml5.js随带一系列预先训练过的模型,因此你可以跳过这一步。

学习机器学习算法如何训练是更好地了解这类工具的好方法。

四、用JavaScript构建图像分类工具

ml5.js让用户很容易创建在网站上运行的图像分类工具。本例中的HTML页面包含一个用于选择图像的文件输入字段。上传的图像在准备好的HTML元素中显示,使ml5.js能够扫描和识别它们。

1.包含ml5.js库

这个项目需要两个库来运作:ml5.js和p5.js。ml5.js是机器学习库,而p5.js使用户可以正确处理图像。你需要两行HTML代码来添加这些库:


2.创建一些HTML元素

接下来,该创建一些HTML元素了。最重要的是带有ID和标记为imageResult的类的div,它将存储最终结果:

MakeUseOf Image Classifier


Click "Choose File" to Add an Image


之后,添加一个文件输入元素,以收集供程序分类的图像。


notallow="uploadedImage.src=window.URL.createObjectURL(this.files[0]); startImageScan()">

输入则负责监听oninput事件,并执行两条由分号分隔的语句,作为响应。第一个语句为图像创建对象URL,这让你可以处理数据,不必将数据上传到服务器。第二个语句调用startImageScan()函数,你将在下一步创建该函数。

最后,添加img元素来显示用户上传的图像:

3.创建扫描图像的JavaScript函数

现在你已有了一些HTML,是时候添加一些JavaScript了。先添加一个const变量来存储你在上一步中创建的imageResult元素。

const element = document.getElementById("imageResult");

接下来,添加一个名为startImageScan()的函数,并在其中使用MobileNet初始化ml5.js图像分类器。

随后使用classifier.classify命令。为它传递前面添加的uploadedImage元素的引用,以及处理结果的回调函数。

function startImageScan() {
// Create a variable to initialize the ml5.js image classifier with MobileNet
const classifier = ml5.imageClassifier('MobileNet');
classifier.classify(document.getElementById("uploadedImage"), imageScanResult);
element.innerHTML = "...";
}

4.创建结果显示函数

还需要一个函数来显示所执行的图像分类的结果。这个函数包含一个简单的if语句,用于检查任何错误。

function imageScanResult(error, results) {
if (error) {
element.innerHTML = error;
} else {
let num = results[0].confidence * 100;
element.innerHTML = results[0].label + "
Confidence: " + num.toFixed(0) + "%";
}
}

5.组合起来

最后,是时候将所有这些代码组合起来。留意、






MakeUseOf Image Classifier



Click "Choose File" to Add an Image







notallow="uploadedImage.src=window.URL.createObjectURL(this.files[0]); startImageScan()">







现在你可以使用一些图像测试脚本了!ml5.js非常擅长对动物图像进行分类,比如这只蟋蟀。

遗憾的是,涉及到更复杂的图像时,该库可能会遇到困难。许多移动设备内置这种技术与设备的摄像头配合使用。其图像分类不如iPhone和安卓手机上的技术来得完美,而且不太准确。但是这种情况会有逐渐改善,因此值得为你的项目使用ml5.js的最新版本。

五、机器学习:计算的未来

正如你所见,在JavaScript中使用机器学习工具比预期的来得容易。这种技术很可能是计算界的未来,强人工智能等概念有赖于该技术。

本文题目:如何用ml5.js和HTML创建一款图像分类工具
本文地址:http://www.gawzjz.com/qtweb2/news33/19333.html

网站建设、网络推广公司-创新互联,是专注品牌与效果的网站制作,网络营销seo公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 创新互联